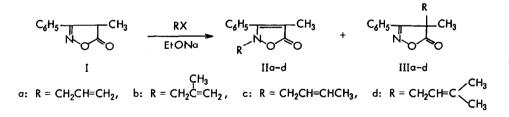

## SIGMATROPIC TAUTOMERISM BETWEEN N-ALLYL-3-ISOXAZOLIN-5-ONES


Yasuo Makisumi and Takashi Sasatani

Shionogi Research Laboratory, Shionogi & Co., Ltd., Fukushima-ku, Osaka, Japan

(Received in Japan 5 December 1968; received in UK for publication 1 January 1969) In continuation of our studies of 3,3-sigmatropic reactions, we have discovered the facile amino-Claisen rearrangement of the N-allyl-enamine system in pyrazolin-5-ones (1). Recent reports (2, 3, 4) on the analogous examples of the amino-Claisen rearrangement prompt a preliminary report of our work on the sigmatropic tautomerism between N-allyl-3-isoxazolin-5-ones and 4-allyl-2-isoxazolin-5-ones.

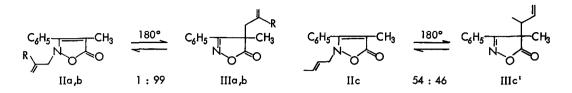


N-Allyl-enamine compounds II were prepared by alkylation of 3-phenyl-4-methylisoxazolin-5-one (I) with allylic halides in the presence of sodium ethoxide (5). In this reaction, I reacted as an ambident anion to afford N-allyl-3-phenyl-4-methyl-3-isoxazolin-5-ones (IIa-d) and 4-allyl-3-phenyl-4-methyl-2-isoxazolin-5-ones (IIIa-d) in the ratio of about 2 : 1. The structures of these products were

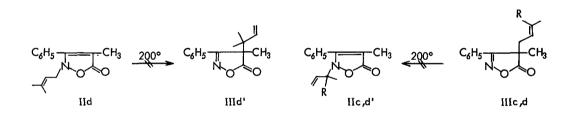


determined by IR and UV spectral analyses as shown in Table I. II showed the IR bands of C=C-C=O and the UV absorption characteristic of  $\Delta^3$ -isoxazolin-5-one (7) and III exhibited the C=O band and the UV absorption characteristic of  $\Delta^2$ -isoxazolin-5-one (7). Moreover, the IR (CHCl<sub>3</sub>) and NMR (CDCl<sub>3</sub>, 60 MHz) spectra showed that the Y-substituted allyl group had not isomerized during reaction.

|     | vCHCl <sub>3</sub><br>vC=C-C | =0 <sup>cm<sup>-1</sup></sup> | λ <mark>EtOH</mark> mμ (log ε) |       | vC+Cl <sub>3 cm</sub> -1 | $\lambda_{max}^{EtOH}$ mµ (log є) |
|-----|------------------------------|-------------------------------|--------------------------------|-------|--------------------------|-----------------------------------|
| Ila | 1730                         | 1637                          | 248 (4.00) 283 (3.98)          | IIIa  | 1796                     | 256.5 (4.07)                      |
| IIb | 1728                         | 1633                          | 245.5 (3.98) 286 (3.98)        | IIIb  | 1795                     | 259 (4.10)                        |
| IIс | 1727                         | 1635                          | 247 (3.98) 282 (3.96)          | IIIc  | 1796                     | 255.5 (4.06)                      |
| IId | 1725                         | 1636                          | 244.5 (3.99) 284 (3.97)        | IIIc' | 1787                     | 254 (4.03)                        |
|     |                              |                               |                                | IIId  | 1791                     | 255.5 (4.06)                      |


TABLE I IR and UV Spectral Data of Isoxazolin-5-ones

Amino-Claisen rearrangements of the N-allyl compound IIa, b.p. 115° (0.05 mm), and the N-methallyl compound IIb, b.p. 134° (0.05 mm), were examined by heating at 180° for 1 hr. Thus, IIa and IIb rearranged to the 4-allyl compound IIIa, b.p. 114-115° (0.2 mm), and the 4-methallyl compound IIIb, b.p. 120° (0.15 mm), respectively, over 95% yields, along with the recovery (ca. 1%) of the unreacted IIa, b.


To test for the inversion of the allyl moiety which occurs in concerted cyclic processes, rearrangement of the N-crotyl compound IIc, b.p. 124-126° (0.04 mm); v 966 cm<sup>-1</sup> (-CH=CH-), was studied. Heating IIc at 180° for 1 hr afforded a sole product, 4-(a-methylallyl)-3-phenyl-4-methyl-2-isoxazolin-5-one (IIIc'), b.p. 114-116° (0.15 mm), which had the -CH=CH<sub>2</sub> group at 999 and 923 cm<sup>-1</sup> and the IR and UV absorptions characteristic of  $\Delta^2$ -isoxazolin-5-one as shown in Table I. This result demonstrates complete inversion of the allyl moiety. However, the yield of IIIc' did not increase over 45% even prolonged heating of IIc at 180° and the ratio of the unreacted IIc to IIIc' showed the constant value of 54 : 46, suggesting the presence of a thermal equilibrium between IIc and IIIc' via cyclic processes.

When IIIc' was heated at 180°, a sole rearranged product, identical with IIc, was isolated in 52% yield and the ratio of IIc to the unreacted IIIc' showed the constant value of 54 : 46. Thus, the sigmatropic tautomerism between IIc and IIIc' via the amino-Claisen and the Cope rearrangements was proved. Cope rearrangements of IIIa and IIIb were also tested by heating at 180° for 1 hr and the expected products IIa and IIb were isolated in about 1% yields, along with the unreacted IIIa and IIIb (over 95% recovery).

These signatropic tautomerisms show that  $\Delta^2$ -isoxazolin-5-ones are thermodynamically more stable than  $\Delta^3$ -isoxazolin-5-ones. The shift of the equilibrium of IIc  $\implies$  IIIc' would be interpreted as a result of the destabilization of IIIc' due to the steric interaction of the a-methyl on allyl group. Such phenomena were



observed in the following reactions. Heating the N-( $\gamma$ ,  $\gamma$ -dimethylallyl) compound IId, b.p. 143° (0.008 mm);  $\tau$  8.62, 8.35 (s, gem di-Me), 6.03 (d, J = 7.5 Hz, N-CH<sub>2</sub>), 4.93 (m, -CH=), at 200° resulted in the quantitative recovery of the unreacted IId and amino-Claisen product, 4-( $\alpha$ , $\alpha$ -dimethylallyl) compound IIId', in which a large destabilization due to steric interaction of  $\alpha$ -gem-dimethyl was presumed, was not detected. Moreover, the 4-crotyl compound IIIc, m.p. 81-82°;  $\nu$  967 cm<sup>-1</sup> (-CH=CH-), and the 4-( $\gamma$ , $\gamma$ -dimethyl-allyl) compound IIId, b.p. 123-125° (0.03 mm);  $\tau$  8.55, 8.42 (s, gem di-Me), 7.32 (d, J = 7.5 Hz, CH<sub>2</sub>), 5.17 (m, -CH=), were stable on heating at 200° and the corresponding Cope rearrangement products, N-( $\alpha$ -methylallyl) and N-( $\alpha$ , $\alpha$ -dimethylallyl) compounds IIC' and IId' were not detectable.



Katritzky and his co-workers (7, 9) have reported the spectral studies on the prototropic tautomerism of pyrazolin-5-ones and isoxazolin-5-ones and suggested a similar tendency in the tautomeric composition of both the systems.

In comparison with the exclusive amino-Claisen rearrangement of 2-allyl-1-phenyl-3-pyrazolin-5-ones to the corresponding 4-allyl-2-pyrazolin-5-ones (1), the results described here suggest that the difference of the thermal stability between the  $\Delta^2$ - and  $\Delta^3$ -pyrazolin-5-ones is relatively larger than that between the  $\Delta^2$ - and  $\Delta^3$ -isoxazolin-5-ones.

1

## REFERENCES

- 1. Y. Makisumi, Tetrahedron Letters 6413 (1966).
- 2. J. Ficini and C. Barbara, Tetrahedron Letters 6425 (1966).
- R. K. Hill and N. W. Gilman, <u>Tetrahedron Letters</u> 1421 (1967); R. K. Hill and G. R. Newkome, Ibid. 5059 (1968).
- 4. P. Scheiner, J. Org. Chem. <u>32</u>, 2628 (1967).
- 5. It has been reported that the alkylation of isoxazolin–5–ones with alkyl halides in the presence of base affords the corresponding N–alkyl compounds as a sole product (6, 7, 8).
- 6. E. P. Kohler and A. H. Blatt, J. Am. Chem. Soc. 50, 504 (1928).
- 7. A. J. Boulton and A. R. Katritzky, Tetrahedron 12, 41 (1961).
- 8. F. De Sarlo, L. Fabbrini, and G. Renzi, Tetrahedron 22, 2989 (1966).
- 9. A. R. Katritzky and F. W. Maine, Tetrahedron 20, 299 (1964).